Rechte vorbehalten. Jegliche Vervielfältigung, Mikroverfilmung oder Speicherung in elektronischen Systemen gleich welcher Art ist untersagt.

Stähle für größere Schmiedestücke – Gütevorschriften

Steels for heavy forgings - Quality requirements

SEW 550 4. Ausgabe

4th edition

Bei Unstimmigkeiten zwischen deutscher und englischer Sprachversion hat die deutsche Version Vorrang.

In the event of inconsistencies between the German and English language versions, the German version shall prevail.

Inhaltsverzeichnis

- 1 Anwendungsbereich
- 2 Definition
- 3 Bestellangaben
- 4 Bezeichnung der Stahlsorten
- 5 Anforderungen
- 5.1 Allgemeines
- 5.2 Erschmelzungsverfahren
- 5.3 Chemische Zusammensetzung
- 5.4 Mechanische Eigenschaften
- 5.5 Maßgeblicher Wärmebehandlungsdurchmesser und Durchvergütbarkeit
- Oberflächenbeschaffenheit und innere Beschaffenheit
- 6 Prüfung und Konformität der Erzeugnisse mit den Anforderungen
- 6.1 Prüfbescheinigungen
- 6.2 Wärmebehandlungszustand bei der Prüfung
- 6.3 Prüfumfang
- 6.4 Probenahme
- 6.5 Anzuwendende Prüfverfahren
- 6.6 Wiederholungsprüfungen
- 7 Normative Verweisungen

Anhang A (informativ)

Table of contents

- 1 Scope
- 2 Definition
- 3 Order information
- 4 Designation of steel grades
- 5 Requirements
- 5.1 General
- 5.2 Melting process
- 5.3 Chemical composition
- 5.4 Mechanical properties
- 5.5 Relevant heat treatment diameter and through hardening behaviour
- 5.6 Surface condition and inner condition
- 6 Testing and conformity of the products with the requirements
- 6.1 Test certificates
- 6.2 Heat treatment condition during the test
- 6.3 Scope of testing
- 6.4 Sampling
- 6.5 Test methods to be used
- 6.6 Retesting
- 7 Normative References

Annex A (informative)

1 Anwendungsbereich

Der Anwendungsbereich der genannten Stähle liegt hauptsächlich im allgemeinen Maschinenbau.

Dieses Stahl-Eisen-Werkstoffblatt (SEW) behandelt diejenigen Stähle, die für größere freiformgeschmiedete Bauteile im vergüteten oder normalgeglühten Zustand verwendet werden.

Bezüglich der Wanddicken- und Wärmebehandlungsquerschnitte schließt SEW 550 an DIN EN ISO 683-2 und DIN EN 10250 (alle Teile) an.

Schwere Schmiedestücke haben üblicherweise eine Wanddicke > 250 mm oder eine Masse von mehreren Tonnen.

Hinweis: Schwere Schmiedestücke können über den Querschnitt inhomogene Werkstoffkennwerte aufweisen. Gründe sind

- unterschiedliche Abkühlgeschwindigkeiten über dne Querschnitt und der damit verbundenen Durchvergütbarkeit in Abhängigkeit von der Stahlsorte
- Seigerungen bei der Erstarrung des Schmiedeblocks und daraus resultierende Gefügevariationen, die auch durch eine Wärmebehandlung nach dem Schmieden nicht ganz homogenisiert werden können.

Dies ist beim Auslegen des Bauteils zu berücksichtigen. Die in diesem SEW festgelegten Werkstoffkennwerte basieren auf Erfahrungen und breiten statistischen Auswertungen.

2 Definition

Die in SEW 550 spezifizierten Stähle sind unlegierte oder niedrig legierte Edelstähle gemäß DIN EN 10020.

3 Bestellangaben

Die folgenden Angaben sind zum Zeitpunkt der Anfrage und Bestellung zwischen Hersteller und Besteller zu vereinbaren und zu dokumentieren:

- Zeichnung / 3-D-Modell einschließlich Toleranzen und Bearbeitungszugaben
- Materialspezifikation nach SEW 550

1 Scope

The range of applications of the steels mentioned concerns mainly general engineering.

This Stahl-Eisen material specification (SEW) covers steels used for larger open die forged components in the quenched and tempered or normalised condition.

Regarding the wall thickness and heat treatment cross-sections to be considered, SEW 550 follows EN ISO 683-2 and EN 10250 (all parts).

Heavy forgings are usually considered having a wall thickness > 250 mm or a mass of several tons.

Note: Large forgings can exhibit inhomogeneous material properties over the cross section. Reasons are

- different cooling rates over the cross section and the resulting through hardening behaviour, depending on the steel grade,
- segregations during solidification of the raw cast ingot with resulting variations in the microstructure, which cannot be entirely homogenized by the heat treatment following the forging process.

This has to be taken into account when designing the component. The material properties specified in this SEW are based on experience and broad statistical assessment.

2 Definition

The steels specified in SEW 550 are unalloyed to low alloyed quality steels according to EN 10020.

3 Order information

The following requirements shall be agreed between manufacturer and purchaser by the time of enquiry and order and documented:

- Drawing / 3D model including tolerances and machining allowances
- Material designation according to SEW 550

- Vorschriften zur zerstörungsfreien Prüfung Specifications for non-destructive testing nach DIN EN 10228-3
- Besondere Vereinbarungen

- according to EN 10228-3
- Special agreements

4 Bezeichnung der Stahlsorten

Die Kurznamen der Stahlsorten werden nach DIN EN 10027 Teil 1 gebildet, die Werkstoffnummern nach DIN EN 10027 Teil 2.

4 Designation of steel grades

Short names for the steel grades are designated in accordance with DIN EN 10027 Part 1, material numbers in accordance with DIN EN 10027 Part 2.

5 Anforderungen

5.1 Allgemeines

Auf Anforderung des Bestellers ist vom Hersteller vor Fertigungsbeginn ein Fertigungs- und Prüffolgeplan zu erstellen.

5.2 Erschmelzungsverfahren

Die Wahl des Erschmelzungs- und Desoxidationsverfahrens bleibt dem Hersteller überlassen. Pfannenmetallurgische Behandlung und Vakuumentgasung sind durchzuführen.

Gegebenenfalls können hierüber bei der Bestellung Vereinbarungen getroffen werden.

Das Erschmelzungsverfahren ist dem Besteller bekannt zu geben.

5.3 Chemische Zusammensetzung

Für die chemische Zusammensetzung nach der Schmelzanalyse gilt Tabelle 1.

Die chemische Zusammensetzung nach Stückanalysen kann seigerungsbedingt von diesen Vorgaben abweichen.

Gegebenenfalls können bei der Bestellung hierüber Vereinbarungen getroffen werden.

5.4 Mechanische Eigenschaften

Stahlsorte und Festigkeitsklasse müssen bei der Bestellung angegeben werden.

Der zum Erreichen der angegebenen Eigenschaften gewählte Wärmebehandlungszustand ist anzugeben. Die Angabe von Wärmebehandlungsdaten ist bei der Bestellung zu vereinbaren.

5 Requirements

5.1 General

At the request of the purchaser a production plan and a test sequence plan shall be prepared by the manufacturer before start of production.

5.2 Melting process

The choice of the melting and deoxidation process is left to the manufacturer. Ladle metallurgical treatment and vacuum degassing shall be performed.

If necessary, agreements on this can be made on the order.

The melting process shall be announced to the purchaser.

5.3 Chemical composition

Table 1 applies to the chemical composition according to the melt analysis.

The chemical composition according to product analyses may deviate from these specifications due to segregation.

If necessary, agreements can be made on the

5.4 Mechanical properties

Steel grade and strength class shall be specified on the order.

The heat treatment condition chosen to achieve the specified properties shall be indicated. The specification of heat treatment data shall be agreed on the order.

Bei schweren Schmiedestücken hängen die erreichbaren mechanischen Kennwerte im Bauteil von dessen Abmessungen ab. **Tabelle 5** gibt einen Überblick über Mindestwerte der Streckgrenzen verschiedener Stähle.

Für Schmiedestücke im normalgeglühten und vergüteten Zustand gelten die in den **Tabellen 2** bis 4 angegebenen Werte für die mechanischen Eigenschaften.

Die mechanischen Anforderungen in den **Tabellen 2 und 3** sind bezogen auf die Hauptachse des Schmiedestückes gemäß **Abbildung 1** definiert. Die Erreichbarkeit der Soll-Werte wird auch durch die Verformungsrichtung beeinflusst und muss daher ebenfalls berücksichtigt werden.

Bei Probenlagen, die von **Abbildung 1** abweichen, sind die mechanischen Kennwerte nicht mehr in jedem Fall gewährleistet. Besondere Vereinbarungen zwischen Hersteller und Besteller werden empfohlen.

5.5 Maßgeblicher Wärmebehandlungsdurchmesser und Durchvergütbarkeit

Der maßgebliche Wärmebehandlungsdurchmesser bestimmt die Verweilzeit des Bauteils im Wärmebehandlungsofen.

Der maßgebliche Wärmebehandlungsdurchmesser (siehe **Tabellen 2 bis 4**) kann mithilfe der in Anhang A dargestellten Querschnittsformen und -abmessungen abgeschätzt werden.

Hinweis: Grundlage für die Festlegung des maßgeblichen Wärmebehandlungsdurchmessers sind fertigungsbedingt vereinfachte Geometrien (von der Fertigkontur abweichende Durchmesser, z. B. Bearbeitungszugaben)

Formeln zur näherungsweisen Berechnung des maßgeblichen Wärmebehandlungsdurchmessers sind ebenfalls Anhang A zu entnehmen.

Für alle anderen Geometrien ist die gewünschte Festigkeitsklasse zu vereinbaren.

Bezug ist die Rohteilgeometrie einschließlich der erforderlichen Bearbeitungszugaben.

Die Durchvergütbarkeit hängt vom Werkstoff ab sowie von den Abmessungen des Schmiedestücks und von der Art des Härtemediums; ggf. auch vom Umformgrad. For heavy forgings, the achievable mechanical properties in the component depend on its dimensions. **Table 5** gives an overview of minimum yield strengths for different steels.

The values for the mechanical properties given in **Tables 2 to 4** apply to forgings in the normalised and quenched and tempered condition.

The mechanical requirements in **Tables 2 and 3** are defined in relation to the major axis of the forging as shown in **Figure 1**. The achievability of the nominal values is also influenced by the direction of forming and must therefore also be considered.

For sample positions deviating from **Figure 1**, the mechanical properties cannot be guaranteed in any case. Specific agreements between manufacturer and purchaser are recommended.

5.5 Relevant heat treatment diameter and through hardening behaviour

The relevant heat treatment diameter determines the holding time of the component in the heat treatment furnace.

The relevant heat treatment diameter (see **Tables 2 to 4**) can be approximated by the cross-sectional shapes and dimensions shown in Annex A.

Note: The specification of the relevant heat treatment diameter is based on geometries, simplified for manufacturing reasons (deviating from the finished contour, e.g., machining allowances)

Formulas for the approximative calculation of the decisive heat treatment diameter are also given in Annex A.

For all other geometries, the desired strength class must be agreed.

It is related to the raw forging geometry including the required machining allowances.

The through hardening behaviour depends on the material, the dimensions of the forging and the type of hardening medium, eventually also from the degree of forming. Einen Hinweis hierzu gibt das Durchvergütbarkeitskriterium nach **Tabelle 3**. Die Bereiche A und B kennzeichnen die Durchvergütungsverhältnisse in Abhängigkeit vom Vergütungsquerschnitt. An indication for this is provided by the hardenability criterion **(Table 3)**. Regions A and B signify the through hardening ratios depending on the heat treatment section.

A = durchvergütender Abmessungsbereich

B = nicht durchvergütender Abmessungsbereich, abhängig vom Werkstoff.

A = through hardening range of dimensionsB = not through hardening range of dimensions, depending on the material

Hinweis: Die Angabe einer Höchstgrenze für den maßgeblichen Wärmebehandlungsdurchmesser bedeutet nicht, dass das betreffende Schmiedestück bis zum Kern ein Vergütungsgefüge aufweist. Wird Durchvergütung bis zum Kern verlangt, muss der Besteller dies dem Hersteller mitteilen.

Note: The specification of a maximum limit for the relevant heat treatment diameter does not mean that the respective forging will exhibit a quenched and tempered structure up to the core. If through hardening to the core is required, the purchaser shall state this to the manufacturer.

Bei einem größeren Oberflächenabstand der Probe als max. D/6 bzw. max. 80 mm dürfen im Bereich A Streckgrenze und Zugfestigkeit nach **Tabelle 3** um höchstens 10 % unterschritten werden, während im Bereich B die mechanischen und technologischen Kennwerte zu vereinbaren sind.

For a larger distance to surface of the sample than max. D/6 respective max. 80 mm, yield strength and tensile strength according to **Table 3** shall not fall below max. 10 % in region A, while in region B the mechanical or technological properties shall be agreed upon.

Über die zweckmäßige Stahlauswahl kann zwischen Besteller und Hersteller gegebenenfalls eine besondere Vereinbarung getroffen werden.

A special agreement on the appropriate choice of steel grade can be made between the purchaser and the manufacturer.

5.6 Oberflächenbeschaffenheit und innere Beschaffenheit

5.6 Surface condition and inner condition

5.6.1 Allgemeines

5.6.1 General

Bearbeitungszugaben, zulässige Toleranzen und Geradheit für unbearbeitete Schmiedestücke und Stäbe aus Stahl, die im rohen Zustand geliefert werden, sind zu vereinbaren. Machining allowances, permissible tolerances and straightness for unmachined steel forgings and bars supplied as forged shall be agreed.

5.6.2 Oberflächenbeschaffenheit roher und bearbeiteter Teile

5.6.2 Surface condition of raw and machined parts

Oberflächenfehler, die innerhalb der vereinbarten Toleranzgrenzen liegen, können ggf. beseitigt werden, sofern die Verwendung des Erzeugnisses nicht beeinträchtigt wird.

Surface defects within the agreed tolerance limits can be removed, if necessary, provided that the use of the product is not impaired.

5.6.3 Ausbessern von Oberflächenfehlern

5.6.3 Repair of surface defects

Das Ausbessern von Oberflächenfehlern durch Schweißen ist unzulässig.

Repair of defects by welding is not permitted.

5.6.4 Innere Beschaffenheit

5.6.4 Inner condition

Der Prüfumfang und die Bewertungskriterien für die Ultraschallprüfung können zwischen Besteller und Hersteller vereinbart werden. The extent of testing and the evaluation criteria for ultrasonic testing can be agreed between the purchaser and the manufacturer.

Die Ultraschallprüfung ist nach DIN EN 10228-3 durchzuführen.

Sofern keine besonderen Vereinbarungen getroffen wurden, wird das Schmiedestück auf mindestens 180° des Umfanges (Hohlteile zu 360°) bzw. zu mindestens 50 % der äußeren, zusammenhängenden Mantelfläche durch Senkrechteinschallung als Rasterprüfung geprüft.

Wurden keine Bewertungskriterien vereinbart, gilt die Qualitätsklasse 2 nach EN 10228-3 für rohe und bearbeitete Oberflächen

6 Prüfung und Konformität der Erzeugnisse mit den Anforderungen

6.1 Prüfbescheinigungen

Wird in der Anfrage und der Bestellung nichts vereinbart, ist ein Abnahmeprüfzeugnis 3.1 nach DIN EN 10204 auszustellen. Die Anlasstemperatur ist anzugeben.

6.2 Wärmebehandlungszustand bei der Prüfung

Das Schmiedestück wird im Wärmebehandlungs-zustand gemäß **Tabellen 2-3** geprüft.

Eine Prüfung in anderen Wärmebehandlungszuständen, eine Entnahme der Proben aus dem Schmiedestück vor der Wärmebehandlung und deren getrennte und/oder besondere Wärmebehandlung müssen bei der Bestellung besonders vereinbart werden.

6.3 Prüfumfang

6.3.1 Prüfeinheit

Schmiedestücke (dieselbe Schmelze, gleicher Abmessungsbereich und gleiche Schmiedefolge) können zu einem Prüflos bzw. einer Prüfeinheit zusammengefasst werden.

Je Prüfeinheit ist das Schmiedestück mit dem größten maßgeblichen Wärmebehandlungsdurchmesser zu prüfen. Ultrasonic testing shall be performed according to EN 10228-3.

If no special agreements have been made, the forging is inspected over at least 180° of the circumference (hollow parts to 360°) or over at least 50 % of the outer, continuous shell surface by normal beam incidence as a grid inspection.

If no evaluation criteria have been agreed, quality class 2 according to EN 10228-3 applies for as-forged and machined surfaces.

6 Testing and conformity of the products with the requirements

6.1 Test certificates

If no agreement has been made in the inquiry and the order, an acceptance test certificate 3.1 according to DIN EN 10204 shall be provided. The tempering temperature is to be noted.

6.2 Heat treatment condition during the test

The forging is tested in the heat treatment condition according to **Tables 2 and 3**.

Testing in other heat treatment conditions, cutting of samples from the forging before heat treatment and their separate and/or special heat treatment shall be specifically agreed upon the order.

6.3 Scope of testing

6.3.1 Test unit

Forgings (same heat, same dimensional range, same forging sequence and same heat treatment lot) can be grouped into a test lot, respective test unit.

For each test unit, the forging with the largest relevant heat treatment diameter shall be tested.

6.3.2 Durchzuführende Prüfungen und Anzahl der Proben

Aus dem entnommenen Probenmaterial sind jeweils eine Zugprobe und drei Charpy-V-Kerbschlagbiegeproben bei Raumtemperatur zu prüfen.

Sind von Raumtemperatur abweichende mechanische Erprobungen erforderlich, sind die Prüftemperatur und der Prüfumfang bei der Bestellung zu vereinbaren.

Warmzugversuche können vereinbart werden (Warmstreckgrenzen siehe **Tabelle 4**).

6.4 Probenahme

6.4.1 Probenanzahl

Die Anzahl der Proben je Prüfeinheit oder Einzelstückerprobung wird vom Hersteller zweckentsprechend gewählt, sofern bei der Bestellung nichts anderes vereinbart wurde.

Die Proben sind in entsprechender Anzahl entweder aus dem Schmiedestück selbst zu entnehmen, oder es muss am Schmiedestück zusätzliches Probenmaterial in ausreichenden Abmessungen vorhanden sein.

Werden zwischen Besteller und Hersteller über die Anzahl der Proben und die Probenlage am Schmiedestück keine Vereinbarungen getroffen, so trifft der Hersteller eine zweckentsprechende Wahl.

Bei Kundenprobenmaterial sind die Menge, die Abmessungen und der Versand in der Bestellung zu vereinbaren.

6.4.2 Probenorientierung

Die Probenorientierung bezieht sich immer auf die geometrische Hauptachse des Schmiedestücks. In **Abbildung 1** sind beispielhaft mögliche Probenlagen dargestellt.

Der Kerb der Charpy-V-Kerbschlagbiegeprobe muss, wenn nicht anders vereinbart, auf der Seite des Probestückes liegen, die der geometrischen Hauptachse des Schmiedestückes zugewandt ist.

Die in den **Tabellen 2 und 3** angewendeten Kurzzeichen L, T und Q kennzeichnen die Probenlage gemäß Abschnitt 6.4.2.

6.3.2 Tests to be carried out and number of samples

From the sample material taken, each one testile test specimen and three Charpy V-notched impact test specimens shall be tested at room temperature.

If mechanical testing deviating from room temperature is required, the test temperature and the scope of the test shall be agreed upon the order.

Hot tensile tests can be agreed upon (for hot yield strengths, see **Table 4**).

6.4 Sampling

6.4.1 Number of samples

The number of samples per test unit or individual component testing is selected by the manufacturer according to the purpose, unless otherwise agreed upon the order.

The appropriate number of samples shall either be taken from the forging itself, or additional sample material of sufficient dimensions shall be available on the forging.

If no agreement has been made between purchaser and manufacturer on the number of samples and the location of the samples on the forging, the manufacturer shall make an appropriate choice.

In case of sample material to be shipped to the customer, quantity, dimensions and way of shipment shall be agreed upon the order.

6.4.2 Sample orientation

The sample orientation always refers to the major geometric axis of the forging. **Figure 1** shows examples of possible sample positions.

The notch of the Charpy V-notch impact test piece shall be located on the side of the specimen facing the geometric major axis of the forging, if not otherwise agreed,

The abbreviations L, T and Q used in **Tables 2** and 3 indicate the sample position according to clause 6.4.2.

L (Längsprobe):

Die Längsprobe ist parallel zur Hauptachse ausgerichtet.

T (Tangentialprobe):

Gilt für runde Querschnitte. Die Achse der Tangentialprobe ist in Umfangsrichtung.

Q (Querprobe):

Bei rechteckigen Querschnitten ist die Probenachse parallel zur größeren Kantenlänge des Rechtecks.

Abweichungen von diesen Festlegungen sind gesondert zu vereinbaren.

Probenentnahmestellen

Für die Entnahmestelle im Querschnitt gilt Folgendes: Die Proben sind bei D/6, jedoch maximal in einer Tiefe von 80 mm des Durchmessers oder der Wand (Dicke) und aaf, in einem entsprechenden Abstand von einer weiteren, benachbarten Oberfläche (z.B. Stirnfläche), zu entnehmen. (Bezug: Kontur zum Zeitpunkt der Vergütung)

Wenn ein anderer Probenort gefordert wird, ist dies bei der Bestellung zu vereinbaren. Hierbei sind auch die einzuhaltenden Werte der mechanischen Eigenschaften festzulegen.

Hinweise:

- 1. Diese Probenlage ist insbesondere für die Festigkeitskennwerte relevant.
- 2. Für die Zähigkeit lassen sich in einfacher Weise keine repräsentativen Probenlagen festlegen (mögliche Ursachen: unterschiedliche Gefüge über den Querschnitt, Spannungen bei der Gefügeumwandlung, evtl. Seigerungen). Dies kann starke Unterschiede der Zähigkeit über den Querschnitt bedingen.
- 3. Wenn vom Bauteil-Design erforderlich, empfiehlt sich ggf. die Definition einer anderen, repräsentativen Probenlage.

6.5 Anzuwendende Prüfverfahren

6.5.1 Zugversuch

Zugversuche sind nach DIN EN ISO 6892 bei der Tensile tests shall be carried out according to festgelegten Temperatur durchzuführen.

L (longitudinal sample):

The longitudinal sample is oriented parallel to the major axis.

T (tangential sample):

Applies to round cross sections. The axis of the tangential sample is in the circumferential direction.

Q (transverse sample):

For rectangular cross-sections, the sample axis is parallel to the larger edge length of the rectangle.

Deviations from these specifications shall be separately agreed.

6.4.3 Sampling locations

The following applies to the location of sampling on the cross section: The samples shall be taken at D/6, maximum in a depth of 80 mm of the diameter or wall (thickness) and where appropriate in a respective distance from another adjacent surface (e.g., end face). (Relation: contour at the time of quench and temper)

If a different sample location is required, this must be agreed upon the order. The required values of the mechanical properties shall also be specified here.

Notes

- 1. This sample location is especially relevant for tensile properties.
- 2. For toughness, there is no easy way to specify representative sample locations (possible reasons: different microstructures over the cross section, stresses during microstructure transformation, eventually segregations). This can result in large toughness differences over the cross section.
- 3. When required from component design, the definition of a different, representative sample location is recommended.

6.5 Test methods to be used

6.5.1 Tensile test

EN ISO 6892 at the specified temperature.

6.5.2 Kerbschlagbiegeversuch (Charpy-V)

Kerbschlagbiegeversuche (Charpy-V) sind bei der festgelegten Temperatur nach DIN EN ISO 148-1 durchzuführen.

Die Orientierung des Kerbs ist zu beachten (siehe **Abbildung 1**).

Die aufgeführten Werte sind Mittelwerte aus drei Proben. Maximal ein Einzelwert darf den Sollwert unterschreiten und muss mindestens 70 % des Sollwertes erreichen.

6.6 Wiederholungsprüfungen

Wiederholungsprüfungen der mechanischen Eigenschaften sind nach DIN EN 10021 durchzuführen.

6.5.2 Charpy V-notched impact test

Charpy V-notch impact tests shall be performed at the specified temperature according to EN ISO 148-1.

The orientation of the notch shall be respected (see **Figure 1**).

The values listed are mean values from three samples. No more than one individual value may fall below the nominal value and shall reach at least 70 % of the nominal value.

6.6 Retesting

Retesting of the mechanical properties shall be carried out in accordance with EN 10021.

7 Normative Verweisungen

DIN EN 10020	Begriffsbestimmungen für die Einteilung der Stähle
DIN EN 10021	Allgemeine technische Lieferbedingungen für Stahlerzeugnisse
DIN EN 10027-1	Bezeichnungssysteme für Stähle – Teil 1: Kurznamen
DIN EN 10027-2	Bezeichnungssysteme für Stähle – Teil 2: Nummern- system
DIN EN ISO 683-1	Für eine Wärmebehandlung bestimmte Stähle, legierte Stähle und Automatenstähle – Teil 1: Unlegierte Vergütungs- stähle
DIN EN ISO 683-2	Für eine Wärmebehandlung bestimmte Stähle, legierte Stähle und Automatenstähle – Teil 2: Legierte Vergütungs- stähle
DIN EN 10204	Metallische Erzeugnisse – Arten von Prüfbescheinigungen
DIN EN 10228-3	Zerstörungsfreie Prüfung von Schmiedestücken aus Stahl – Teil 3: Ultraschallprüfung von Schmiedestücken aus ferri-
	tischem oder martensitischem Stahl

7 Normative References

EN 10020	Definition and classification of grades of steel
EN 10021	General technical delivery conditions for steel products
EN 10027-1	Designation systems for steels - Part 1: Steel names
EN 10027-2	Designation systems for steels – Part 2: Numerical system
EN ISO 683-1	Heat-treatable steels, alloy steels and free-cutting steels – Part 1: Non-alloy steels for quenching and tempering
EN ISO 683-2	Heat-treatable steels, alloy steels and free-cutting steels – Part 2: Alloy steels for quench- ing and tempering
EN 10204	Metallic products – Types of inspection documents
EN 10228-3	Non-destructive testing of steel forgings – Part 3: Ultrasonic testing of ferritic or martensitic steel forgings
EN 10250 all parts	Open die steel forgings for general engineering purposes – parts 1 to 4

DIN EN ISO 6892 alle Teile	Metallische Werkstoffe – Zugversuch
DIN EN ISO 148-1	Metallische Werkstoffe – kerbschlagbiegeversuch nach Charpy – Teil 1: Prüfverfahren

EN ISO	Metallic materials -
6892	Tensile testing
all parts	
EN ISO	Metallic materials - Charpy
148-1	pendulum impact test -
	Part 1: Test method

Änderungen gegenüber der 3. Ausgabe 1976

- 1 Anwendungsbereich wurde angepasst, einschließlich Hinweis zur Anwendung
- 2 Definition der Stähle wurde angepasst
- 3 Bestellangaben wurden hinzugefügt
- 5.4 Das Vorgehen bei abweichenden Probenlagen wurden präzisiert
- 5.5 Bestimmung des maßgeblichen Wärmebehandlungsdurchmessers wurde präzisiert
- 5.6 Anforderungen an die Oberflächen-Beschaffenheit für rohe und bearbeitete Teile zusammengefasst
- 5.6 Ausbessern von Oberflächenfehlern durch Schweißen generell unzulässig
- 5.6.4 US-Prüfung und Qualitätsklasse 2 ergänzt
- 6.1 Prüfbescheinigungen wurden angepasst
- 6.3 Prüfumfang wurde präzisiert
- 6.3.1 Prüflos umfasst das Wärmebehandlungslos (vgl. DIN EN 10250, 3.1)
- 6.4 Probenahme wurde präzisiert
- 6.5 Härteprüfung wurde gestrichen
- 7 Verweis auf TGL wurde ergänzt (betrifft **Abbildung 1**)
- Abbildung 1 hinzugefügt (Darstellung der Probenlage und Schmiederichtung)
- Stahlsorten hinzugefügt (1.8872, 1.8875, 1.8881, 1.8070, 1.7707, 1.6773, 1.6742)
- Stahlsorten gestrichen (1.6311, !.6755)
- Tabelle 1: Zusammensetzung (P, S) eingeschränkt gegenüber EN 10250
- Tabellen 2+3: Werkstoffkennwerte wurden angepasst

Changes compared to 3rd edition 1976

- 1 Scope was adapted, including a note on application
- 2 Definition of steels was adapted
- 3 Order information was supplemented
- 5.4 Process for deviating sample positions was described more precisely
- 5.5 Determination of relevant heat treatment diameter was described more precisely
- 5.6 Requirements on the surface condition for raw and machined parts was summarized
- 5.6 Repair of surface defects by welding generally not permitted
- 5.6.4 Ultrasonic inspection and quality class 2 supplemented
- 6.1 Test certificates were adapted
- 6.3 Scope of testing described more precisely
- 6.3.1 test lot includes the heat treatment lot (see EN 10250-1, clause 3.1)
- 6.4 Sampling described more precisely
- 6.5 Hardness testing was removed
- 7 Reference to TGL added (relates to Figure 1)
- Figure 1 was added (Description of sample positions and forging direction)
- Steel grades added (1.8872, 1.8875, 1.8881, 1.8070, 1.7707, 1.6773, 1.6742)
- Steel grades deleted (1.6311, 1.6755)
- Table 1: Chemical composition slightly restricted (P, S) compared to EN 10250
- Tables 2+3: material properties were changed

 Tabelle 1:
 Chemische Zusammensetzung von Stählen für größere Schmiedestücke

 Table 1:
 Chemical composition of steels for larger forgings

Werkstoffsorte / Material grade	Material grade					Chemisc	Chemische Zusammensetzung / chemical composition	ensetzung	/ chemical	compositie	uo			
Kurzname	Werkstoffnummer	2 %	% Si	% Mn	% Ь	s %	% Cr	% Mo	% Ni	۸ %	no %	qN %	N %	andere/other
Name	Number				max.	max.								
C22E	1.1151	0,17/0,24	≥ 0,40	0,40/0,70	0,025	0,015	≥ 0,40	≤ 0,10	≤ 0,40					
C35E	1.1181	0,32/0,39	≥ 0,40	0,50/0,80	0,025	0,015	≥ 0,40	≤ 0,10	≥ 0,40					
C45E	1.1191	0,42/0,50	≥ 0,40	0,50/0,80	0,025	0,015	≥ 0,40	≤ 0,10	≥ 0,40					
C50E	1.1206	0,47/0,55	≥ 0,40	06'0/09'0	0,025	0,015	≥ 0,40	≤ 0,10	≥ 0,40					
C60E	1.1221	0,57/0,65	≥ 0,40	06'0/09'0	0,025	0,015	≥ 0,40	≤ 0,10	≥ 0,40					
20Mn5	1.1133	0,17/0,23	≥ 0,40	1,00/1,50	0,025	0,015	≥ 0,40	≤ 0,10	≥ 0,40					Al ≥ 0,020
28Mn6	1.1170	0,25/0,32	≥ 0,40	1,30/1,65	0,025	0,015	≥ 0,40	≤ 0,10	≥ 0,40					
P460QL1	1.8872	≤ 0,18	≥ 0,50	≤ 1,70	0,02	0,01	≥ 0,50	≥ 0,50	≥ 1,00	≥ 0,08	≥ 0,30	≥ 0,05	≤ 0,015	Ti ≤ 0,030
														$Zr \le 0.05$ B ≤ 0.005
P500QL1	1.8875	≤ 0,18	≥ 0,65	≥ 1,70	0,02	0,01	> 1,00	≥ 0,70	≥ 1,50	≥ 0,08	≥ 0,30	≥ 0,05	≤ 0,015	Ti ≤ 0,050
														Zr ≤ U,15 B ≤ 0,005
P690QL1	1.8881	≤ 0,20	≥ 0,80	≤ 1,70	0,02	0,01	≥ 1,50	≥ 0,70	≤ 2,50	≤ 0,12	≥ 0,30	90,0≥	≤ 0,015	Ti ≤ 0,050
														Zr ≤ 0,13 B ≤ 0,005
24CrMo5	1.7258	0,20/0,28	≥ 0,40	0,50/0,80	0,025	0,015	0,90/1,20	0,20/0,35	≥ 0,60					
34CrMo4	1.7220	0,30/0,37	≥ 0,40	06'0/09'0	0,025	0,015	0,90/1,20	0,15/0,30	≥ 0,60					
42CrMo4	1.7225	0,38/0,45	≥ 0,40	06'0/09'0	0,025	0,015	0,90/1,20	0,15/0,30	≥ 0,60					
50CrMo4	1.7228	0,46/0,54	≥ 0,40	0,50/0,80	0,025	0,015	0,90/1,20	0,15/0,30	≥ 0,60					
21CrMoV5-11	1.8070	0,17/0,25	09'0/08'0	0,30/0,60	0,025	0,015	1,20/1,50	1,00/1,20	≥ 0,60	0,25/0,35				
30CrMoV9	1.7707	0,26/0,34	≥ 0,40	0,40/0,70	0,025	0,015	2,30/2,70	0,15/0,25	≥ 0,60	0,10/0,20				
32CrMo12	1.7361	0,28/0,35	≥ 0,40	0,40/0,70	0,025	0,015	2,80/3,30	0,30/0,50	≥ 0,60					
34CrNiMo6	1.6582	0,30/0,38	≤ 0,40	0,50/0,80	0,025	0,015	1,30/1,70	0,15/0,30	1,30/1,70					
30CrNiMo8	1.6580	0,26/0,34	≥ 0,40	0,50/0,80	0,025	0,015	1,80/2,20	03'0/08'0	1,80/2,20					
28NiCrMoV8-5	1.6932	0,24/0,32	≥ 0,40	0,15/0,40	0,025	0,015	1,00/1,50	0,35/0,55	1,80/2,10	0,05/0,15				
36NiCrMo16	1.6773	0,32/0,39	≥ 0,40	0,30/0,60	0,025	0,015	1,60/2,00	0,25/0,45	3,60/4,10					
33NiCrMoV14-5	1.6956	0,28/0,38	≥ 0,40	0,15/0,40	0,025	0,015	1,00/1,70	09'0/08'0	2,90/3,80	0,08/0,25				
20NiCrMo14-6	1.6742	0,17/0,25	≥ 0,35	0,20/0,40	0,025	0,015	1,50/2,00	0,40/0,60	3,00/3,80	≥ 0,03				Al ≥ 0,050

Tabelle 2: Für Schmiedestücke aus unlegierten Stählen im normalgeglühten Zustand gewährleistete Werte der mechanischen Eigenschaften bei Raumtemperatur

Table 2: Guaranteed mechanical property values at room temperature for forgings made of unalloyed steels in the normalized condition

Werkstoffso Material gra Kurzname		Wärmebe- handlungs- Indize	Maßgeblicher Wärmebe- handlungs-	Streckgrenze bzw. Rp0,2- Dehngrenze	Zugfestigkeit Rm	(Lo=5	idehnu 5do) enlage	ng	(ISO-	schlaga V) enlage	ırbeit
	nummer		durchmesser								
Name	Number					L	Т	Q	L	Т	Q
			mm	MPa mind.	MPa	9	6 mind	i.	,	J mind	
C22E	1.1151	TN 420	160 – 250	225	420 – 570	23	20	17	30	25	20
		TN 400	251 – 500	215	400 – 550	23	20	17	25	20	15
		TN 390	501 – 1000	210	390 – 540	22	19	16	20	17	15
C35E	1.1181	TN 500	160 – 250	275	500 – 650	19	17	15	25	20	15
		TN 480	251 – 500	255	480 – 630	19	17	15	20	16	12
		TN 470	501 – 1000	250	470 – 620	18	16	14	17	14	12
C45E	1.1191	TN 560	160 – 250	330	560 – 740	16	14	12	18	14	10
		TN 540	251 – 500	310	540 – 720	16	14	12	15	12	10
		TN 530	501 – 1000	300	530 – 700	15	13	11	12	11	10
C50E	1.1206	TN 620	160 – 250	345	620 – 770	12	10	9	-		
		TN 600	251 – 500	330	600 – 750	12	10	9	_		
		TN 590	501 – 1000	320	590 – 740	11	9	8	_		
C60E	1.1221	TN 650	160 – 250	375	650 – 840	11	10	8	_		
		TN 630	251 – 500	360	630 – 830	11	10	8	-		
		TN 620	501 – 1000	350	620 – 810	10	8	7	_		

Tabelle 3 Teil 1: Für vergütete Schmiedestücke gewährleistete Werte der mechanischen Eigenschaften bei Raumtemperatur

Table 3 Part 1: Guaranteed mechanical property values at room temperature for quenched and tempered forgings

Werkstoffse Material gra		Wärme- behand-	Maßgeblicher Wärmebe-	Durch- vergüt-	Streckgrenze bzw. Rp0,2-	Zugfestig- keit Rm	Bruc (Lo=	hdehr 5do)	nung	1	schla (ISO-V	
Kurzname	Werkstoff- nummer	lungs- Indize	handlungs- durchmesser	barkeit1)	Dehngrenze		Prob	enlag	е	Prob	enlag	е
Name	Number]					L	Т	Q	L	Т	Q
			mm		MPa mind.	MPa	9	6 mino	d.	,	J mind	l.
C22E	1.1151	QT 410	160 – 250	В	225	410 - 540	27	25	22	70	50	40
		QT 410	251 – 500	В	215	410 - 540	26	24	20	60	40	35
C35E	1.1181	QT 490	160 – 250	В	295	490 - 640	22	18	15	39	31	26
		QT 490	251 – 500	В	275	490 - 640	21	17	14	36	29	22
C45E	1.1191	QT 590	160 – 250	В	345	590 - 740	19	17	12	29	24	19
		QT 590	251 – 500	В	325	590 - 740	18	16	11	27	21	16
C50E	1.1206	QT 630	160 – 250	В	365	630 - 780	17	14	11	-		
		QT 630	251 – 500	В	335	630 - 780	16	13	10	-		
C60E	1.1221	QT 690	160 – 250	В	370	690 - 840	15	13	10	-		
		QT 690	251 – 500	В	355	690 - 840	14	12	9	-		
20Mn5	1.1133	QT 490	160 – 250	В	330	490 - 640	20	18	15	48	34	27
		QT 490	251 – 500	В	300	490 - 640	20	18	14	48	34	27
28Mn6	1.1170	QT 600	160 – 250	В	400	600 - 750	17	15	12	41	27	21
		QT 550	251 – 500	В	350	550 - 700	17	15	13	38	27	21
P460QL1	1.8872	QT 520	160 – 250	Α	380	520 - 710	18	16	16	55	31	31
		QT 520	251 – 500	В	360	520 - 710	18	16	16	55	31	31
		QT 520	501 – 750	В	340	520 - 710	18	16	16	55	31	31
P500QL1	1.8875	QT 540	160 – 250	Α	410	540 - 740	16	15	15	55	31	31
		QT 540	251 – 500	В	390	540 - 740	16	15	15	55	31	31
		QT 540	501 – 750	В	370	540 - 740	16	15	15	55	31	31
P690QL1	1.8881	QT 710	160 – 250	Α	600	710 - 900	14	12	12	55	31	31
		QT 670	251 – 500	В	560	670 - 850	14	12	12	55	31	31
		QT 650	501 – 750	В	520	650 - 830	14	12	12	55	31	31
24CrMo5	1.7258	QT 650	160 – 250	В	450	650 - 800	16	14	12	45	34	25
		QT 600	251 – 500	В	400	600 - 750	17	14	13	38	27	22
34CrMo4	1.7220	QT 700	160 – 250	В	500	700 - 850	15	13	11	41	25	20
		QT 650	251 – 500	В	450	650 - 800	15	13	11	35	25	20
42CrMo4	1.7225	QT 750	160 – 250	Α	550	750 - 900	15	13	11	35	20	16
		QT 700	251 – 500	В	500	700 - 850	15	13	11	30	20	16
		QT 600	501 – 750	В	400	600 - 750	15	13	11	25	18	14
50CrMo4	1.7228	QT 800	160 – 250	Α	600	800 - 950	13	11	9	30	20	14
		QT 750	251 – 500	В	550	750 - 900	14	12	9	20	16	12
		QT 700	501 – 750	В	500	700 - 850	14	12	9	15	12	10
21Cr- MoV5-11	1.8070	QT 700	160 – 250	А	550	700 - 850	16	14	12	41	34	27
		QT 650	501 – 750	Α	500	650 - 800	17	15	13	41	34	27

Die Bereiche A und B kennzeichnen die Durchgütungsverhältnisse der Stähle für große Schmiedestücke in Abhängigkeit vom Vergütungsquerschnitt. (siehe Abschnitt 5.5)

The ranges A and B indicate the steel tempering ratios for large forgings depending on the quenched and tempered cross-section. (see clause 5.5)

Tabelle 3 Teil 2: Für vergütete Schmiedestücke gewährleistete Werte der mechanischen Eigenschaften bei Raumtemperatur

Table 3 Part 2: Guaranteed mechanical property values at room temperature for quenched and tempered forgings

Werkstoffso Material gra		Wärme- behand-	Maßgeblicher Wärmebe-	Durch- vergüt-	Streckgrenze bzw. Rp0,2-	Zugfestig- keit Rm	Bruc (Lo=	hdehr 5do)	nung		schlao (ISO-V	•
Kurzname	Werkstoff- nummer	lungs- Indize	handlungs- durchmesser	barkeit1)	Dehngrenze		Prob	enlag	е	Prob	enlage	Э
Name	Number						L	Т	Q	L	Т	Q
			mm		MPa mind.	MPa	9	6 mine	d.		J mind	
30Cr- MoV9	1.7707	QT 900	160 – 250	А	700	900 - 1100	12	10	8	35	20	17
		QT 800	251 - 500	Α	600	800 - 950	13	12	10	35	24	20
		QT 750	501 - 1000	В	550	750 - 900	14	10	8	27	20	15
32CrMo12	1.7361	QT 900	160 – 250	Α	700	900 - 1100	12	10	8	35	25	20
		QT 850	251 - 500	Α	650	850 - 1000	13	11	9	35	28	20
		QT 800	501 - 750	В	600	800 - 950	14	12	10	34	24	21
		QT 700	751 - 1250	В	500	700 - 850	15	13	11	34	24	21
34CrNi- Mo6	1.6582	QT 800	160 – 250	А	600	800 - 950	13	11	9	54	36	27
		QT 750	251 - 500	Α	550	750 - 900	13	11	9	48	36	27
		QT 700	501-1000	В	500	700 - 850	13	11	9	42	30	27
30CrNi- Mo8	1.6580	QT 900	160 – 250	А	700	930 - 1130	12	10	8	54	41	30
		QT 850	251 - 500	Α	650	850 - 1000	13	11	9	54	41	30
		QT 800	501 - 1000	В	600	800 - 950	13	11	9	48	36	30
28NiCr- MoV8-5	1.6932	QT 800	160 – 250	Α	650	800 - 950	14	12	10	66	47	29
		QT 750	500 - 1000	В	600	750 - 900	15	13	11	76	56	37
		QT 700	1001 - 1500	В	550	700 - 850	16	14	12	85	66	47
36NiCr- Mo16	1.6773	QT 1000	≤ 500	А	800	1000 - 1200	11	8	8	48	32	27
		QT 900	501 - 1000	Α	700	900 - 1100	11	8	8	48	32	27
33NiCr- MoV14-5	1.6956	QT 950	≤ 1000	А	800	950 - 1150	12	10	8	58	41	32
		QT 900	1001 - 1500	В	750	900 - 1100	13	11	9	58	41	32
		QT 850	1501 - 2000	В	700	850 - 1000	14	12	10	58	41	32
20NiCr- Mo14-6	1.6742	QT 800	≤ 1000	А	650	800 - 950	13	11	9	66	47	32
		QT 750	1001 - 1500	В	600	750 - 900	14	12	10	76	56	37
		QT 700	1501 - 2000	В	550	700 - 850	15	13	11	85	66	47

¹⁾ Die Bereiche A und B kennzeichnen die Durchgütungsverhältnisse der Stähle für große Schmiedestücke in Abhängigkeit vom Vergütungsquerschnitt (siehe Abschnitt 5.5)

¹⁾ The ranges A and B indicate the steel tempering ratios for large forgings depending on the quenched and tempered cross-section (see clause 5.5)

Tabelle 4 Teil 1: Für vergütete Schmiedestücke gewährleistete Warmstreckgrenzen der Stähle im vergüteten Zustand Table 4 Part 1: Guaranteed values for the yield point at elevated temperature for quenched and tempered forgings

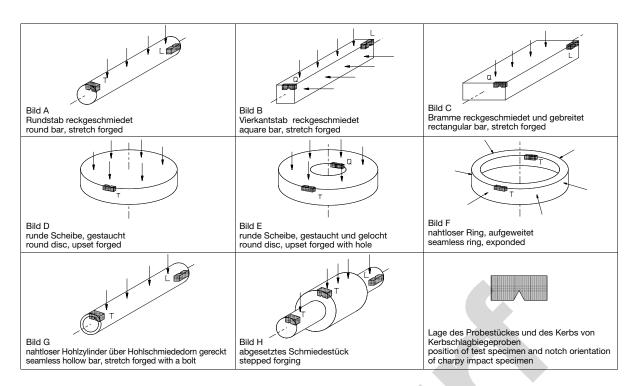

Werkstoffsort	Werkstoffsorte / Material grade	Wärme-	Maßgeblicher			Stre	ckgrenze ode	Streckgrenze oder 0,2 Dehngrenze	nze		
Kurzname Name	Werkstoffnummer Number	behandlungs- Indize	Wärmebehandlungs- durchmesser	20°C	100°C	200°C	250°C	300°C	350°C	400°C	450°C
			mm				MPa, mind.	mind.			
C22E	1.1151	QT 410	160 – 250	225	211	196	177	147	118	86	
		QT 410	251 – 500	215	201	186	167	137	108	88	
C35E	1.1181	QT 490	160 – 250	295	265	235	216	196	177		
		QT 490	251 – 500	275	245	216	206	186	187		
C45E	1.1191	QT 590	160 – 250	345	314	284	255	235	206		
		QT 590	251 – 500	325	294	265	245	226	196		
C50E	1.1206	QT 630	160 – 250	365	333	304	284	265	226		
		QT 630	251 – 500	335	304	275	255	235	206		
C60E	1.1221	QT 690	160 – 250	028	345	324	304	284	255		
		QT 690	251 – 500	355	324	294	275	260	231		
20Mn5	1.1133	QT 490	160 – 250	330	290	265	235	226	206		
		QT 490	251 – 500	300	270	245	226	216	196		
28Mn6	1.1170	QT 600	160 – 250	400	363	333	314	294	265		
		QT 550	251 – 500	350	324	304	275	255	235		
P460QL1	1.8872	QT 520	160 – 250	380	373	324	294	275	245	216	
		QT 520	251 – 500	360	353	304	275	255	225	196	
		QT 520	501 – 750	340	333	287	269	238	212	186	
P500QL1	1.8875	QT 540	160 – 250	430	392	343	314	294	265	235	
		QT 540	251 – 500	410	373	324	296	275	245	216	
		QT 540	501 – 750	390	353	304	284	257	226	196	
24CrMo5	1.7258	QT 650	160 – 250	450	397	382	371	343	324	294	265
		QT 600	251 – 500	400	358	333	314	294	275	255	216
34CrMo4	1.7220	QT 700	160 – 250	200	441	422	392	363	333	304	275
		QT 650	251 – 500	450	392	371	343	314	294	265	235
42CrMo4	1.7225	QT 750	160 – 250	250	486	461	441	422	392	363	
		QT 700	251 – 500	200	431	412	402	382	353	324	
		QT 600	501 – 750	400	363	333	324	304	275	245	

 Tabelle 4 Teil 2: Für vergütete Schmiedestücke gewährleistete Warmstreckgrenzen der Stähle im vergüteten Zustand

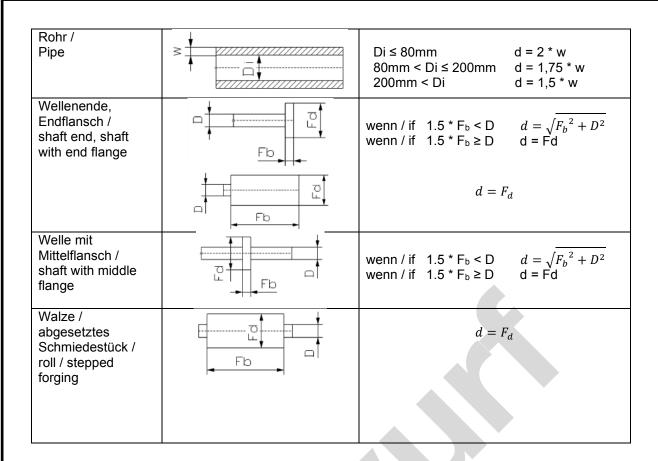
 Table 4 Part 2: Guaranteed values for the yield point at elevated temperature for quenched and tempered forgings

Werkstoffsorte	Werkstoffsorte / Material grade	Wärme-	Maßgeblicher			Stre	ckgrenze ode	Streckgrenze oder 0,2 Dehngrenze	nze		
Kurzname Name	Werkstoffnummer Number	behandlungs- Indize	Wärmebehandlungs- durchmesser	20°C	100°C	200°C	250°C	300°C	350°C	400°C	450°C
			mm				MPa,	MPa, mind.			
50CrMo4	1.7228	QT 800	160 – 250	009	554	520	490	451	412	371	
		QT 750	251 – 500	220	510	481	461	431	392	353	
		QT 700	501 – 750	200	461	431	402	371	333	294	
21CrMoV5-11	1.8070	QT 700	<= 500	220	530	510	200	480	460	430	400
		QT 650	501 – 750	200	480	460	450	430	410	380	350
30CrMoV9	1.7707	QT 900	160 – 250	200	099	620	280	240	510	480	
		QT 800	251 – 500	009	220	510	490	470	440	410	
		QT 750	501 – 1000	250	530	490	470	450	420	400	
32CrMo12	1.7361	QT 900	160 – 250	700	657	628	809	629	539	200	
		QT 850	251 – 500	099	809	629	529	539	200	461	
		QT 800	501 – 750	009	699	230	210	490	451	412	
		QT 700	751 – 1250	200	471	451	441	422	392	353	
34CrNiMo6	1.6582	QT 800	160 – 250	009	549	510	481	441	412	371	
		QT 750	251 – 500	250	202	471	451	412	382	353	
		QT 700	501-1000	200	466	441	422	392	363	343	
30CrNiMo8	1.6580	QT 900	160 – 250	200	259	628	298	699	520	481	
		QT 850	251 – 500	650	809	579	549	510	471	431	
		QT 800	501 – 1000	900	559	530	200	471	431	392	
28NiCrMoV8-5	1.6932	QT 800	<= 500	650	809	579	549	510	471	431	
		QT 750	500 – 1000	009	699	230	009	124	431	392	
		QT 700	1001 – 1500	550	515	490	461	431	402	363	
33NiCrMoV14-5	1.6956	QT 950	<= 1000	800	745	706	677	647	598	559	
		QT 900	1001 – 1500	750	969	657	628	598	559	520	
		QT 850	1501 – 2000	200	647	809	579	549	510	471	

Table 5: Overview of minimum values for the yield strength in the quenched and tempered condition (the yield strength valid for a steel or, if applicable, Tabelle 5: Übersicht über Mindestwerte der Streckgrenze im vergüteten Zustand (Die für einen Stahl oder ggf. mehrere Stähle gültige Streckgrenze 33NiCrMoV14-5 (bis 1500) 33NiCrMoV14-5 (bis 2000) 28NICrMoV8-5 (bis 1500), 20NICrMo14-6 (bis 2000) 20NICrMo14-6 (bis 1500) bzw. 1501 bis 2000 1251 bis 1500 1001 bis 1250 33NiCrMoV14-5 20NICrMo14-6 28NiCrMoV8-5 32CrMo12 several steels are indicated by a dash immediately below or above the short name(s) in each case). ist jeweils unmittelbar unter oder über dem/den Kurznamen durch einen Strich gekennzeichnet.) 30CrNiMo8; 28NiCrMoV8-5 32CrMo12; 34CrNiMo6 751 bis 1000 33NiCrMoV14-5 20NiCrMo14-6 36NiCrMo16 30CrMoV9 Durchmesser in mm 32CrMo12;30CrNiMo8; 28NiCrMoV8-5 50CrMo4: 21CrMoV5-11: 34CrNiMo6 36NiCrMo16 501 bis 750 30CrMoV9 42CrMo4 P500QL1 P690QL1 P460QL1 32CrMo12; 30CrNiMo8; 28NiCrMoV8-5 P690QL1 Mo4; 21CrMoV5-1 36NiCrMo16 251 bis 500 34CrNiMo6 30CrMoV9 24CrMo5 34CrMo4 42CrMo4 P500011 20Mn5 C50E C35E C22E 30CrMoV9; 32CrMo12; 30CrNiMo8 P690QL1; 50CrMo4; 34CrNiMo6 42CrMo4 34CrMo4 24CrMo5 P500QL1 20Mn5 bis 250 C60F C50F C45E C22E 800 500 400 750 700 900 550 450 350 250 200 650 300 Mindestwert der Streckgrenze in N/mm²

Abbildung 1: Skizzen zur Lage des Probestücks und der Lage des Kerbs der Kerbschlagbiegeproben (Charpy-V). Pfeile zeigen die Haupt-Umformrichtungen

Figure 1: Sketches showing the position of the sample and the position of the notch of the Charpy V-notch impact test pieces. Arrows indicate the main forming directions


Anhang A (informativ):

Annex A (informative):

Formeln zur näherungsweisen Berechnung des maßgeblichen Wärmebehandlungsdurchmessers d

Formulas for approximative calculation of the relevant heat treatment diameter d

Benennung / Designation	Schema / schematic	Formel / Formula
Runder Querschnitt / round cross section	(Stab)	d = D
Quadratischer Querschnitt / square cross section	(Stab)	d = 1,25 * a
Rechteckiger Querschnitt / rectangular cross section	(Stab)	a/b > 1.3
Scheibe / disk		b ≤ 1.5 * D d = 1,5 * b
Scheibe mit Loch / disk with hole	Di In	h ≤ 1.5 * Da und/and Di ≤ 1.5 * Da h < (Da-Di)/2
Ring / ring	Di h	h ≤ 1.5 * Da und / and Di > 1.5 * Di h ≤ (Da-Di)/2

Stehen zwei Formeln zur Verfügung, werden bei-If two formulas are available, both are used to calculate d. The smaller value for d is used. de zur Berechnung von d herangezogen. Verwendet wird der kleinere Wert für d.

Wärmebehandlungsdurchmesser / relevant heat treatment diameter d:

D: Durchmesser / diameter

D: Innendurchmesser / inner diameter

D_a: Außendurchmesser / outer diameter

a, b: Kantenlänge / edge length Wanddicke / wall thickness w:

Höhe (Scheibe, Scheibe mit Loch, Ring) / height (disk, disk with hole, ring) h:

Flansch- und Wellen- bzw. Walzendurchmesser / flange and shaft diameter, barrel diameter

F_d: Flansch- und Wellen- bzw. Walzenbreite / flange and shaft width, barrel width